

LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION

SPEC No. L C 9 6 4 3 6

FILE No.

ISSUE APR.25.1996

PAGE 25 Pages

REPRENTATIVE DIVISION

ENGINEERING DEPARTMENT 2
DUTY PANEL DEVELOPMENT
CENTER
NARA LIQUID CRYSTAL
DISPLAY GROUP

SPECIFICATION

DEVICE SPECIFICATION for
Passive Matrix Color LCD Module
(800 × 600 dots)

Model No.

LM80 C27

☐ ICUSTOMER'	S	APPROVAL
--------------	---	----------

DATE

υV

PRESENTED /

BY

Y. Inoue

DEPARTMENT GENERAL MANAGER

ENGINEERING DEPARTMENT II

DUTY PANEL DEVELOPMENT CENTER

NARA LIQUID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

SPEC No.	MODEL No.	PAGE
I C 0 6 1 3 6	T M 8 O C 2 7	1

1. Application


This data sheet is to introduce the specif cation of LM80C27, Passive Matrix type Color LCD Module.

2. Construction and Outline

Construction: 800x600 dots color display module consisting of an LCD panel, PWB(printed wiring board) with electric components mounted onto, TCP(tape carrier package) to connect the LCD panel and PWB electrically, and plastic chassis with CCFT back light and bezel to fix them mechanically.

Signal ground($V_{s\,s}$) is connected with the me al bezel.

DC/DC converter is built in.

Outline :See Fig. 10

Connection :See Fig. 10 and Table 6

5	\blacksquare	Δ	13	P

SPEC No.	MODEL No.	PAGE
L C 9 6 4 3 6	LM80C27	2

3. Mechanical Specifications

Table I

Parameter	Specifications	Unit
Outline dimensions	$264.5 \pm 0.5 (\text{W}) \times 193.5 \pm 0.5 (\text{H}) \times 8.0 \pm 0.5 (\text{D})$	mm
Active area	230. 375(W) X172.775(H)	mm
Viewing area	234.4±0.2(W)×176.8±0.2(H)	mm
Display format	800(W) X600(H) full dots	_
Dot size	$0.071 \times RGB(W) \times 0.2630(H)$	mm
Dot spacing	0.025	mm
*1 Base color	Normally black *2	
Weight	Approx. 420	g

*1 Due to the characteristics of the LC material, the colors vary with environmental temperature.

*2 Negative-type display

Display data "H" : $ON \rightarrow transmission$ Display data "L": OFF $\rightarrow light isolat$ on

- 4. Absolute Maximum Ratings
- 4-1 Electrical absolute maximum ratings

Table 2

Parameter	Symbol	MIN.	MAX .	Unit	Remark
Supply voltage (Logic)	V _{DD} -V _{SS}	О	6.0	V	Ta=25 °C
Input voltage	V _{tN}	-0.3	V _{DD} +0.3	٧	Ta=25 °C
Vcon voltage	Vcon	0	V _{DD}	V	Ta=25 "C

SPEC No.	MODEL No.	PAGE
LC96436	LM80C27	3

4-2 Environmental Conditions

Table 3

						
I tern	Ts	tg	Topr		Remark	
	MIN.	MAX.	MIN.	MAx .		
Ambient temperatuer	-25 "C	+60 "C	0 ℃	+40 "C	Note 4)	
Humidity	Not	Note 1) Note 1)		te 1)	No condensation	
Vibration	Not	te 2)	Note 2)		3 directions (X/Y/Z)	
Shock	Not	te 3)	No	te 3)	6 directions $(\pm X \pm Y \pm Z)$	

Note 1) $Ta \leq 40$ "C80 % RH Max

Ta>40 °C.....Absolute humidity shall be less than Ta=40 °C/80% RH.

Note 2)

Table 4

Frequency	10 Hz~57 Hz	57 H _z ∼500 Hz
Vibration level	_	9.8 m/s²
Vibration width	0.075 mm	
Interval	10 Hz~500 Hz~	10 Hz/11.0 min

2 hours for each direction of X/Y/Z (6 hours as total)

Note 3) Accerelation: 490 m/s²

Pulse width: 11 ms

3 times for each direction of $\pm X/\pm Y/\pm Z$

Note 4) Care should be taken so that the LCD module may not be subjected to the temperature out of this specification.

į

 SPEC No.
 MODEL No.
 PAGE

 L C 9 6 4 3 6
 L M 8 0 C 2 7
 4

5. Electrical Specifications

5-1 Electrical characteristics

(1/tFRM=120Hz)

	<u>'able 4</u>	Ta=25 "C	$V_{DD} =$	5.0 V±	10 %	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage (Logic)	V _{DD} -V _{SS}	Ta=0~40 °C Note 1)	4.5	5.0	5.5	V
		Ta= O "C	1.0			
Contrast adjust voltage	Vcon-Vss	Ta= 25 ℃		1.95		
(Note 2)		Ta=40 "C			2.5	V
Input signal voltage	VIN	"H" level	2	_	V _{DD} +0.3	V
		"L" level	-0.3	_	0.8	V
SupplY current	Innl	Ta=25 "C Note 1,2)	_	240	360	MA
	I _{DD} 2	Ta=25 "C Note 1,3)	_	300	450	MA
Rush current (Logic)	Irush	Ta=25 'C,	1	.5A(pk)>	< 50ms	
Ripple current (Logic)	Irip	Ta=25 'C,		1A(pk)>	≺10µs	
Power consumption	Pd1(TYP)	Note 1,2)	_	1200	1800	mW
	Pd1(MAX)	Note 1,3)	_	1500	2250	mW

Note 1) Under the following conditions.;

①Immediately after the rise of VDD.

: 1.5 Ax50 ms

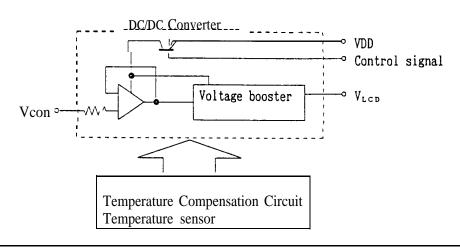
Quinder the situation that DISP signa is on and kept steady. : 1.0 A×50 μs

Note 2) Frame frequency= 120 Hz, Vcon-Vss = 1 95 v Display pattern = all digits ON (DUO-7, DLO-7 = 'H')

Note 3)Frame frequency = 120 Hz, Vcon-Vss = 1.95 V Display pattern = black/white stripe patten ■ m999mBBumammm
□ ICICICICICICICICIOCIIJOIJCICI

■ mmmmnmm9mM9B

Note 4) Contrast adjustment voltage "Vcon-Vss" is transformed into the LCD driving vloltage "V_{LCD}" by following circuit built in the LCD module.


LCD driving voltage "V_{LCD}" is adjusted automatically according to the change of ambient temperature range by the temperature compensation circuit.

Temperature compensation circuit built in LCD module have been set obtain the optimum contrast under following driving condition;

Take care that voltage for optimum contrast is changed under the different condition.

Frame frequency: 120 Hz, Duty ratio: 300 (an odd number frame), Ta= 25 "C 328 (an even number frame)

*The above is the condition of the module setting, not the electrical characteristics.

PAGE 5

SHARP

3-2 Interface signals

OLCD

Used connector:DF9B-41P-1V(HIROSE)
Correspondable connector:DF9B-41S-1V(HIROSE)

Table 5

<u>Table 5</u>							
Pin No	Symbol	Description	Level				
1	Vss	Ground potential					
2	XCK	Data inoput clock signal	" H" →" L"				
3	Vss	Ground potential	_				
4	Vss	Ground potential					
5	LP	Input data latch signal	" H" →" L"				
6	YD	Scan start-up signal	" H"				
7	Vss	Ground potential					
8	Vss	Ground potential	_				
9	VDD	Power supply for logic and LCD	_				
10	DISP	Display control signal	H (ON), L (OFF)				
11	Vss	Ground potential	_				
1 2	Vss	Ground potential					
13	Vss	Ground potential	_				
14	DL7	Display data signal (Lower)	H (ON), L (OFF)				
15	DL6	Display data signal (Lower)	H (ON), L (OFF)				
16	DL5	Display data signal (Lower)	H (ON), L (OFF)				
17	DL4	Display data signal (Lower)	H (ON), L (OFF)				
18	DL3	Display data signal (Lower)	H (ON), L (OFF)				
19	DL2	Display data signal (Lower)	H (ON), L (OFF)				
20	DL1	Display data signal (Lower)	H (ON), L (OFF)				
2 1	DLO	Display data signal (Lower)	H (ON), L (OFF)				
2 2	Vss	Ground potential	_				
2 3	Vss	Ground potential	_				
2 4	Vss	Ground potential	_				
2 5	DUO	Display data signal (Upper)	H (ON), L (OFF)				
26	DU1	Display data signal (Upper)	H (ON), L (OFF)				
2 7	DU2	Display data signal (Upper)	H (ON), L (OFF)				
28	DU3	Display data signal (Upper)	H (ON), L (OFF)				
29	DU4	Display data signal (Upper)	H (ON), L (OFF)				
30	DU5	Display data signal (Upper)	H (ON), L (OFF)				
3 1	DU6	Display data signal (Upper)	H (ON), L (OFF)				
3 2	DU7	Display data signal (Upper)	H (ON) , L (OFF)				
3 3	Vss	Ground potential	_				
3 4	Vss	Ground potential					
3 5	Vss	Ground potential					
3 6	VDD	Power supply for logic and LCD	_				
3 7	VDD	Power supply for logic and LCD	_				
3 8	Vcon	Contrast adjust voltage					
3 9	NC	, ,	_				
4 0	Vss	Ground potential	_				
4 1	Vss	Ground potential	_				
	. ~ ~	1					

 SPEC No.
 MODEL No.
 PAGE

 L C 9 6 4 3 6
 L M 8 0 C 2 7
 6

3-2 Interface signals

OCCFT

Pin No	Symbo 1	Description	Level
1	HV	High voltage line (from Inverter)	
2	NC		_
3	GND	Ground line (from Inverter)	_

OCCFT

Used connector:BHR-03VS-1 (JST)
Correspondable connector:SM02 8. O) B-BHS(JST)

Except above connector shall be out of guaranty.

\$

SHARP LC 96436 LM80C27 7 (1,799) (1,800)(1,2)COLUMN (2,799 (2,1 (2,2)(2,800) 800×3 (RGB) LOW x600 dots (599,1) (599,2) (599,799)(599,800) (600,1) (600,2)(600,799)(600,800)四四四四四 四四四四四 R E N R E E ACC D O G 出の田と N H H 4日日 स स्र N C E A C 足五年 H (A) E B R DL DL DL DL DLDL 6 G 5 B 4 R 2 B 3 R 2 R 4 G G G В B R G В R G В R R G В DL DL DL DL DL DL þЦ DL þЦ : Lower SEG Drivers Lower data(DL0~7) Fig.1 Dot chart of display area : Upper SEG Drivers

SPEC No.

MODEL No.

PAGE

Upper data(DU0∼7)

SPEC No. MODEL No. PAGE LC96436 LM80C27 SHARP 8 LPx300 pulses (an odd number frame): LPx328 pulses (an even mumber frame) YD * Electrical and optical characteristics are specified by above condition. LP 2nd line's 300 (328)th DUO 1st line's 1st line's 2nd line's display display line's display display ₹ DU7 data data display data data data 302th line's 600 (628)th 301th line's 301th line's 302th line's DLO line's display display display display 7 display data data data data data DL7 XCK \times 800 \times (3/8) pulses LP XCK XCK B(1,3)DU7 R(1,1)G(1,6)R(1,9)B(1,11)G(1, 14)G(1,1)R(1,4)B(1,6)DU6 R(1,12)G(1,9)B(1, 14)DU5 B(1,1)G(1,4)R(1,7)B(1,9)G(1,12)R(1,15)R(1,2)B(1,4)DU4 G(1,7)R(1,10)B(1,12) G(1,15)DU3 G(1,2)R(1,5)B(1,7)G(I,10)R(1,13)B(1,15)DU2 B(1,2)G(1,5)R(1,8)B(1,10)G(1,13)R(1, 16)DU1 R(1,3)B(1,5)G(1,8)R(1,11)B(1,13)G(1, 16)DUO R(1,6)B(1,8)G(1,3)G(1,11)R(1,14)B(1.16)R(301,1) B(301,3) G(301,6)B(301,11) G(301,14) DL7 R(301,9)DL₆ G(301,1) | R(301,4)B(301,6)R(301,12; B(301,14) G(301,9)DL5 B(301,1) | G(301,4)R(301,7)B(301,9)G(301,12)||R(301,15)||DL4 R(301,2)B(301,4)G(301,7)R(301,10) | B(301,12) | G(301,15)DL3 G(301,2)R(301,5) B(301,7)G(301,10) R(301,13) B(301,15) DL2 B(301,2)G(301,5)R(301.8)B(301,10) G(301,13) R(301,16)B(301,5)G(301,8)DL1 R(301,3)R(301,11) B(301,13) G(301,16) G(301,3) $R(301,6) \mid B(301,8)$ G(301,11) R(301,14) B(301,16) DLO Fig.2 Data input timing chart

9

L C 9 6 4 3 6 L M 8 0 C 2 7

Table 7 Interface timing ratings

			Rating		
Item	Symbo 1	MIN.	TYP.	MAX.	Unit
Frame cycle *1	tFRM	8.33		16.94	ms
Y D signal "H" level set up time	tHYS	100			ns
"H" level hold time	tHYH	100			ns
"L" level set up time	tLYS	100			ns
"L" level hold time	tLYH	40			ns
LP signal "H" level pulse width	tWLPH	200			ns
XCK signal clock cycle	tCK	50			ns
"H" level clock width	tWCKH	27			ns
"L" level clock width	tWCKL	15			ns
Data set up time	tDS	21			ns
hold time	tDH	17			ns
L P ↑ allowance time from X C K ↓	tLS	200			ns
$X C K \uparrow$ allowance time from $L P \downarrow$	tLH	200			ns
Input signal rise/fall time *2	tr,tf			13	ns

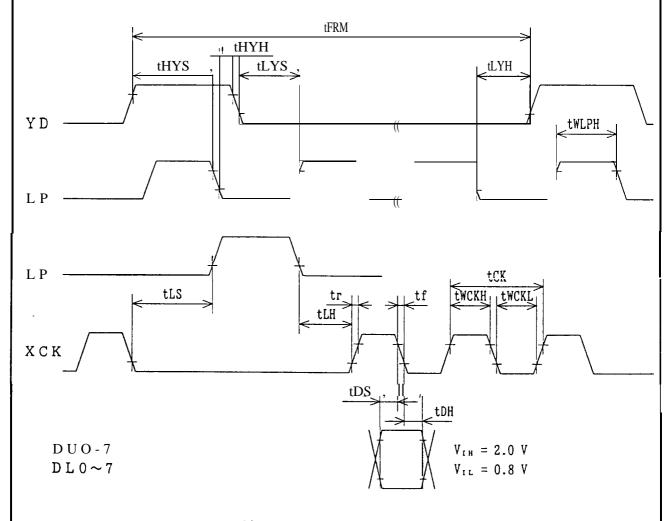
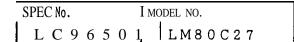



Fig.3 Interface timing chart

PAGE

10

SHARP

*1LCD unit functions at the minimum frame cycle of 8.33 ms(Maximum frame frequency of 120 Hz).

Owing to the characteristics of LCD unit, shadowing" will become more eminent as frame frequency goes up, while flicker wil be reduced.

According to our experiments, frame cycle of 8.33 ms Min. or frame frequency of 120 Hz Max. will demonstrate optimum display quality in terms of flicker and "shadowing". But since judgement of display quality is subjective and display quality such as "shadowing" is pattern dependent, it is recommended that decision of frame frequency, to which power consumption of the LCD unit is proportional, be made based on your own through testing on the LCD unit with every possible patterns displayed on it.

* The intervals of one LP fall and the next must be always the same, and LPs must be input continuously.

The intervals must be 70 us Max.

*2 When LCD module is operated by high speed of XCK(shift clock), (tWCK-tWCKL)/2 is maximum.

SPEC No.	MODEL No.	PAGE
L C 9 6 4 3 6	LM80C27	. 1 1

6. module Driving Method

6.1 Circuit configuration

Fig.9 shows the block diagram of the modu e's circuitry.

6.2 Display Face Configuration

The display consists of 800x3 (R,G,B)×600 dots as shown in Fig.1.

The interface is single panel with double drive to be driven at 1/300(328) duty ratio (300:an odd number frame, 328:an even number frame)

6.3 Input Data and Control Signal

The LCD driver is 240 bits LSI, consisting of shift registers, latch circuits and LCD driver circuits. Input data for each row (800x3 R,G,B) will be sequentially transferred in the form of 8 bit parallel data through shift registers from top left of the display together with clock signal(XCK).

When input of one row (800 x 3, R, G, B dots) is completed, the data will be latched in the form of parallel data corresponding to the signal electrodes by the falling edge of latch signal (LP). Then, the corresponding drive signals will be transmitted to the 800 x 3 lines of column electrodes of the LCD panel by the LCD drive circuits.

At this time, scan start-up signal (YD) has been transferred from the scan signal driver to the 1st row of scan electrodes, and the contents of the data signals are displayed on the 1st row of the display face according to the combinations of voltages applied to the scan and signal electrodes of the LCD. While the data of 1st row are being displayed, the data of 2nd row are entered. When data for 640x3 dots have been transferred, they will be latched by the falling edge of LP, switching the display to the 2nd row.

Such data input will be repeated up to the 300(328)th row of each display segment, from upper row to lower rows, to complete one frame of display by time sharing method.

Simultaneously the same scanning sequence occur at the lower panel. Then data input proceeds to the next display frame,

YD generates scan signal to drive horizontal electrodes.

SPEC No.	MODEL No.	PAGE
L C 9 6 4 3 6	L M 8 0 C 2 7	1 2

Since DC voltage, if applied to LCD panel, causes chemical reaction in LC materials, causing deterioration of the materials, drive wave-form shall be inverted at every display frame to prevent the generation of such DC voltage. Control Signal M plays such a role.

Because of the characteristics of the CMOS driver LSI, the power consumption of the display module goes up with the clock frequency of XCK.

To minimize data transfer speed of XCK clock the LSI has the system of transferring 8 bit parallel data through the 8 lines of shift registers.

Thanks to this system the power consumption of the display module is minimized.

In this circuit configuration, 8 bit display data shall input to data input pins of $000\sim7$ and $000\sim7$.

Furthermore, the display module has bus line system for data input to minimize the power consumption with data input terminals of each driver LSI being activated only when relevant data input is fed.

Data input for column electrodes and chip select of driver LSI are made as follows:

The driver LSI at the left end of the display face is first selected, and the adjacent driver LSI right next side is selected when data of 240 dot (30XCK) is fed. This process is sequentially continued until data is fed to the driver LSI at the right end of the display face. This process is followed simultaneously both at the top and bottom column drivers LSI's.

Thus data input will be made through 8 bit bus line sequentially from the left end of the display face.

Since this display module contains no refresh RAM, it requires the above data and timing pulse inputs even for static display.

The timing chart of input signals are shown in Fig. 3 and Table 7.

S	H	Д	13	P

SPEC No.	MODEL No.	PAGE
LC96436	LM80C27	13

7.0ptical Characteristics

$$Ta = 25 \text{ °C}, V_{DD} = 5.0 \text{ V, Vcon-V}_{ss} = Vmax$$

Table 8

Following spec are based upon the electrical measuring conditions, on which the contrast of perpendicular direction ($\theta x = \theta y = 0$ °)will be MAX.

Paramete	r	Symbol	Condition		MIN.	TYP.	MAX.	Unit	Remark
Viewing angle	Viewing angle range θx		Co>5.0 e y = o •		-30	ı	30	dgr.	Notel)
		<i>Ө</i> у	$e x = o^{0}$		-15		20	dgr.	
Contrast ratio		со	$\theta x = \theta y = 0$ °		15	25	=	_	Note2)
Response time	Rise	τr	$\theta x = \theta y = 0$ °		Ī	220	300	ms	Note3)
	Decay	τd	$\theta x = \theta$	y=0°	-	80	100	ms	
module	White	X	$\theta x = \theta$	y = 0 °	0.240	0.290	0.340	_	
chromaticity		Υ	$\theta x = \theta$	y=0 °	0.280	0.320	0.380	-	

Note 1) The viewing angle range is defined as shown Fig.4.

Note 2) Contrast ratio is defined as follows:

$$c o = \frac{Luminance(brightness) all pixels "White" at Vmax}{Luminance(brightness) all pixels "dark" at Vmax}$$

Vmax is defined in Fig.6.

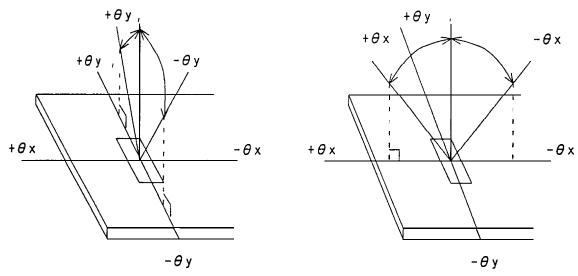
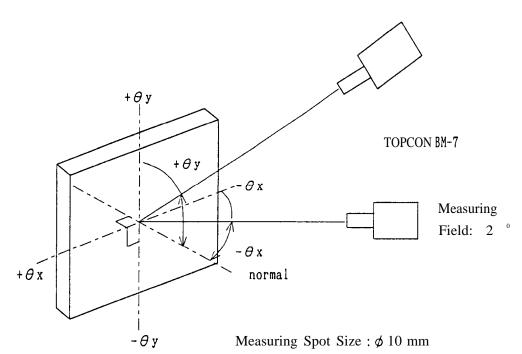


Fig. 4 Definition of Viewing Angle

Note 3) The response characteristics of photo-detector output are measured as shown in Fig.7,assuming that input signals are applied so as to select and deselect the dots to be measured, in the optical characteristics test method shown in Fig.8.

LC96436


MODEL No.

LM80C27

PAGE

8x: Angle from "normal" to viewing surface rotated about the horizontal axis.

 θ y : Angle from "normal" to viewing surface rotated about the vertical axis.

Fig.5 Optical Characteristics Test Method I

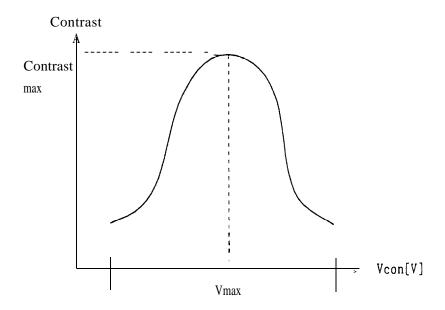
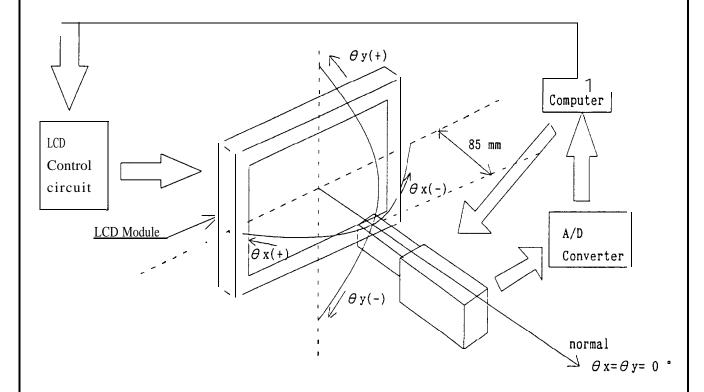


Fig.6 Definition of Vmax


 SPEC No.
 MODEL No.
 PAGE

 L C 9 6 4 3 6
 L M 8 0 C 2 7
 · 1 5

(Response Measurument)

Ta=25 °C

In dark room

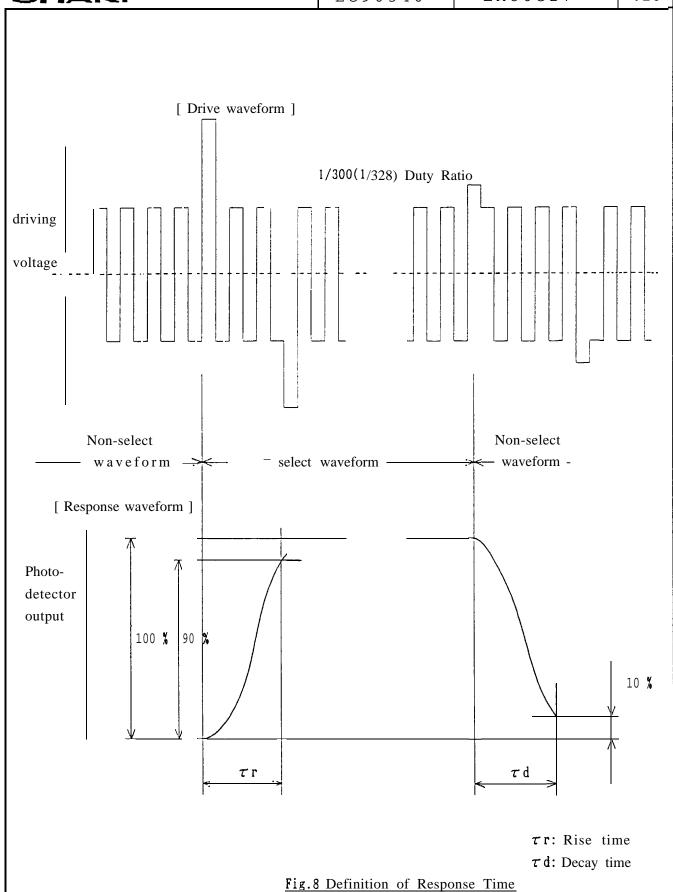
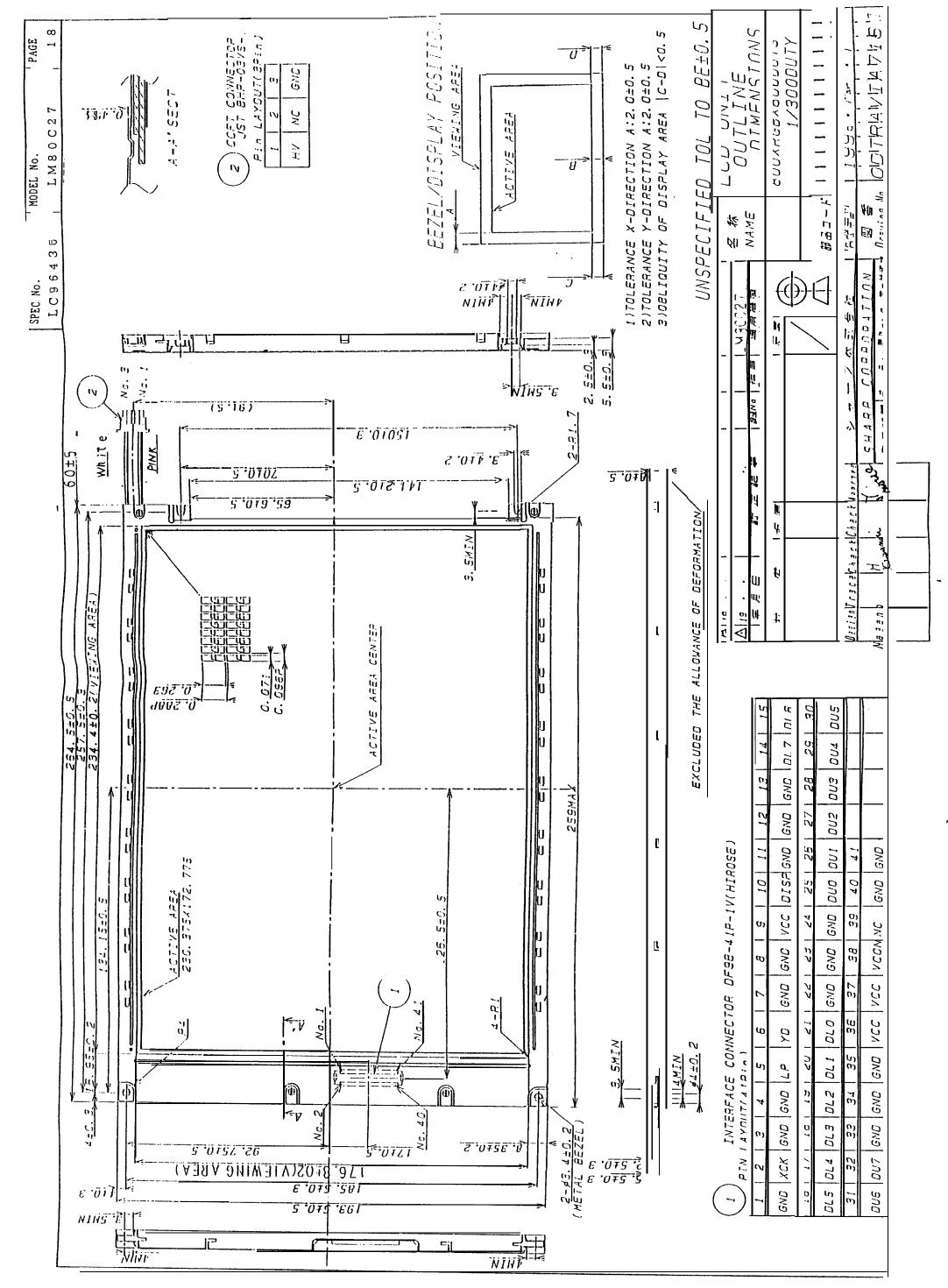

Measuring Field: 2 °)

Fig.7 Optical Characteristics Test Method II

 SPEC No.
 MODEL No.
 PAGE

 L C 9 6 3 4 6
 L M 8 0 C 2 7
 .16

SHARP


4

LC96436 LM80C27 17 SHARP Chip inductor DISP-W DUO~7— Buffer DL0~7— I.C. XCK---\\\\-LP-W-SEG Drivers (Upper) *1 MG (1,800)1(1,1)(1,2) (2,800)(2>1)(2,2) Sequence RGB Control 0 M = MCircuit (300,1)(300, 800 -- 800×600 DOTS LCD PANEL--(301, "1) (301,800 DISP. D ON/OFF CONT. r *2 BG (600,800) (600,1)SEG Drivers (Lower) Vss $v_{\tt n\tt n}$ DC/DC Converter Vcon CCFTTemperature Compensation Circuit **CCFT** Inverter *1MG: M generator circuit Fig.9 Circuit block diagram *2 BG: Bias generator & Protection circuit

SPEC No.

MODEL No.

PAGE

ţ

e i

SPEC No. MODEL No. PAGE L C 9 6 4 3 6 L M 8 0 C 2 7 1 9

SHARP

8. Characteristics of Backlight

The ratings are given on condition that the following conditions are satisfied.

1) Rating (Note)

Parameter	Min	Тур	Max	Unit
Brightness	60	80		cd/m²

- 2) Measurement circuit: CXA-M1OL (TDK) (at IL= 5.0 mArms)
- 3) Measurement equipment: BM-7 (TOPCON Corporation)
- 4) Measurement conditions
 - 4-1 Measurement circuit voltage: DC=1O.2 V, at primary side
 - 4-2 LCD: All digits WHITE, VDD=5.0 V, Vcon-Vss=Vmax, DU0~7="H" (WHITE), DL0~7="H" (WHITE) Frame Frequency 120 Hz
 - 4-3 Ambient temperature: 25 "C

Measurement shall be executed 30 minutes after turning on.

5 Used lamp: HMBT26D61W243C/X HARISON ELECTRIC CO. ,LTD.:1pc

Used cable: UL3579, AWG26 (NISSEI ELECTRIC CO., LTD.

or SUMITOMO ELECTRIC INDUSTRIES LTD.)

5-1 Rating

I Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Lamp voltage	V _L	-	500	-	Vrms	_
Lamp current	IL	2	5	6	mArms	(*1)
LAMP power consumption	PL	÷	2.5	-	W	(*2)
Lamp frequency	FL	20	-	50	kHz	_
Kick-off voltage	V _s	-	-	900	Vrms	Ta=25 "C
			-	1 100	Vrms	Ta=O "C (*3)
Lamplife time	LL	10 000			h	(*4)(*5)

Within no conductor closed. (CCFT only)

- (*1) It is recommended that IL be not more than 6.0 mArms so that heat radiation of CCFT backlight may least affect the display quality.
- (*2) Power consumption excluded inverter loss.
- (*3) The circuit voltage of the inverter should be designed to have some margin, because VS may be increased due to the leak current in case of the LCD module.
- (*4) The Lamp life time(L_L) is 10 000 hours at 6.0 mArms.
- (*5) Average life time of CCFT will be decreased when LCD is operating at lower temperature.

5-2 Operating life

The operating life time is 10 000 hours or more at 6.0 mArms. (Operating life with CXA-M10L or equivalent.)

The inverter should meet the following conditions to keep the specified life time of used lamp;

- -Sine, symmetric waveform without spike in positive and negativ
- -Output frequency range: 20 KHz-50 KHz

Make sure the operating conditions by executing the burn-in enough time.

J

SPEC No.	MODEL No.	PAGE
LC96436	LM80C27	2 0

The operating life time is defined as having ended when any of the following conditions occur; 25 ± 1 "C

- -When the voltage required for initial discharge has reached 110~% of the initial value
- -When the illuminence or quantity of light has decreased to 60 % of the initial value

(NOTE) Rating are defined as the average brightness inside the viewing area specified in Fig.11.

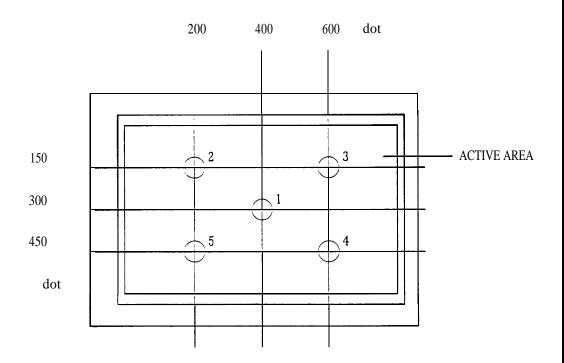


Fig. 11 Measuring points (1~5)

SPEC No.	MODEL No.	PAGE
L C 9 6 4 3 6	LM80C27	. 2 1

9. Precautions

1) Industrial (Mechanical)design of the product in which this LCD module will be incorporated must be made that the viewing angle characteristics of the LCD may be optimized.

This module's viewing angle is illustrated in Fig.12.

 θ y MIN < viewing angle < θ y MAX

(For the specific values of θ ymin. θ ymax. refer to the table 9.) Please consider the optimum viewing conditions according to the purpose

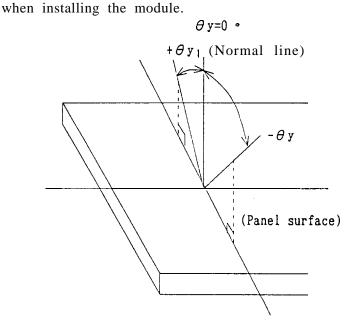
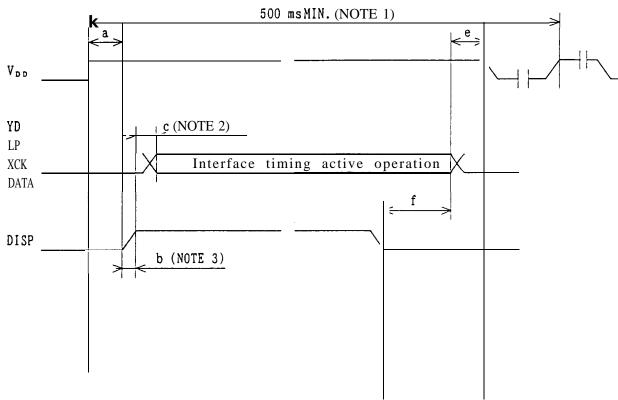


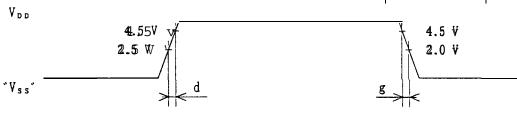
Fig. 12 Dot matrix LCD viewing angle

2) This module is installed using mounting holes metal PBC or bezel.

When installing the module, pay attention and handle carefully not to allow any undue stress such as twist or bend.

A transparent acrylic resin board or other type of protective panel should be attached to the front of the module to protect the polarizer, LCD cells, etc.


,


SPEC No.	MODEL NO.	PAGE
LC96436	LM80C27	. 2 2

- 3) Since the front polarizer is easily damaged. Please pay attention not to scratch on its face.
- 4) If the surface of the LCD cells needs to be cleaned, wipe it swiftly with cotton or other soft cloth. If still not completely clear, blow on its and wipe.
- 5) Water droplets, etc, must be wiped off immediately since they may cause color changes, staining, etc, if remained for a long time.
- 6) Since LCD is made of glass plates, dropping the module or banging it against hard objects may cause cracking or fragmentation.
- 7) CMOS LSIs are equipped in this module, so care must be taken to avoid the electro static charge, by earthing human body, etc. Take the following measures, to protect the module from the electric discharge via mounting tabs from the main system the electrified with static electricity.
 - (1) Earth the metallic case of the main system (contact of the module and main system).
 - (2) Insulate the module and main system by attaching insulating washers made of bakelite or nylon, etc.
- 8) The module should be driven according to the specified ratings to avoid malfunction of parmanent damage. DC voltage drive leads to rapid deterioration of LC, so ensure that the drive is alternating waveform by continuous application of the signal M. Especially the power ON/OFF sequence shown on next page is strongly recommended to avoid latch-up of drive LSIS and application of DC voltage to LCD panel.
- 9) Since leakage current, which may be caused by routing of CCFT cables, etc., may affect the brightness of the display, the inverter has to be designed taking the leakage current into consideration. Thorough evaluation of the LCD module/inverter built into its host equipment shall be conducted, therefore, to ensure the specified brightness.
- 10) Avoid to expose the module to the direct sun-light, strong ultraviolet light, etc. for a long time.
- 11) If stored at temperatures below specified storage temperature, the LC may freeze and be deteriorated. If storage temperature exceed the specified rating. the molecular orientation of the LC may change to that of a liquid, and they may not revert to their original state. As for as possible always store at normal room temperature.
- Disassembling the LCD module can cause permanent damege and should be strictly avoided.

I MODEL NO. 23 LC96436 LM80C27

Supply voltage sequence condition

	POWER ON			
SYMBOL	Allowable value			
a	O ms MIN. 1 s MAX			
b	ı	100 ns MAX.		
С	50 ms MIN.	-		
d	-	10 ms MAX.		

	POWER OFF				
SYMBOL	Allowable value				
e	O ms MIN.	1 s MAX.			
f	O ms MIN.	1 s MAX.			
g	10ms MIN	_			

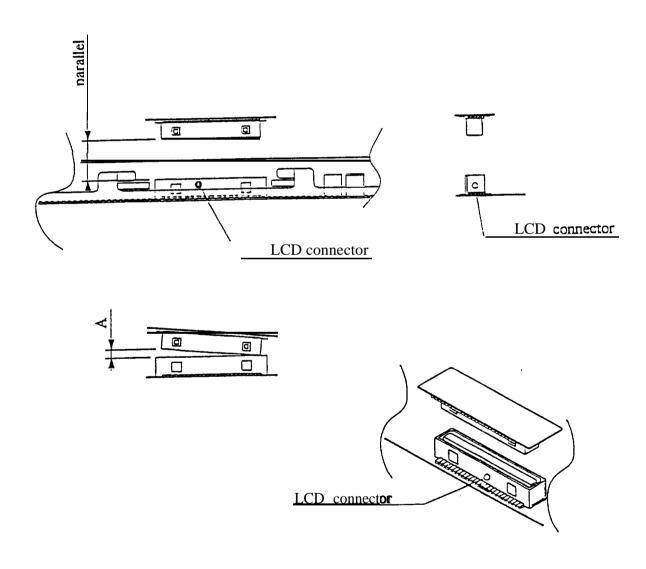
(NOTE 1) Power ON/OFF cycle time. All signals and power line shall be in accordance with above sequence in case of power ON/OFF.

(NOTE 2) In this period, YD and LP shall be "L" level,

(NOTE 3) Except V_{DD}=DISP.

- -- -- -

SHARP


SPEC No.	MODEL No.	PAGE
LC 96436	LM80C27	2 4

13) How to insert interface connector

When the interface connector is inserted, it should be parallel to the connector of LCD module and it should be inserted horizontally.

When the connector is attempted to be fixed to LCD connector, it should be inserted properly in order not to create a gap as shown *A".

Please insert the connector as both edge is placed to the connect position of LCD connector.

SPEC No.		MODEL No.	PAGE
LC	96436	LM80C27	25

9. Applicable inspection standard

The LCD module shall meet the following inspection standard : S-U-014

10. This specification describes display quality in case of no gray scale. Since display quality can be affected by gray scale methods, display quality shall be carefully evaluated for the usability of the LCD MODULE in case gray scale is displayed on the LCD MODULE.

WARN ING

DON'T USE ANY MATERIALS WHICH EMIT FOLLOWING GAS FRON EPOXY RESIN (AMINES' HARDENER) AND SILICONE ADHESIVE AGENT (DEALCOHOL OR DEOXYM) TO PREVENT CHANGE POLORIZER COLOR OWING TO GAS.